Complex random energy model: zeros and fluctuations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex random energy model : zeros and fluctuations

The partition function of the random energy model at inverse temperature β is defined by ZN (β) = ∑N k=1 exp(β √ nXk), where X1, X2, . . . are independent real standard normal random variables, and n = logN . We identify the asymptotic structure of complex zeros of ZN , as N → ∞, confirming predictions made in the theoretical physics literature. Also, we describe the limiting complex fluctuatio...

متن کامل

The Complex Zeros of Random Polynomials

Mark Kac gave an explicit formula for the expectation of the number, vn (a), of zeros of a random polynomial, n-I Pn(z) = E ?tj, j=O in any measurablc subset Q of the reals. Here, ... ?In-I are independent standard normal random variables. In fact, for each n > 1, he obtained an explicit intensity function gn for which E vn(L) = Jgn(x) dx. Here, we extend this formula to obtain an explicit form...

متن کامل

Convergence of Random Zeros on Complex Manifolds

We show that the zeros of random sequences of Gaussian systems of polynomials of increasing degree almost surely converge to the expected limit distribution under very general hypotheses. In particular, the normalized distribution of zeros of systems of m polynomials of degree N , orthonormalized on a regular compact set K ⊂ Cm, almost surely converge to the equilibrium measure on K as N → ∞.

متن کامل

The Complex Zeros of Random Sums

Mark Kac gave an explicit formula for the expectation of the number, νn(Ω), of zeros of a random polynomial, Pn(z) = n ∑ j=0 ηjz j , in any measurable subset Ω of the reals. Here, η0, . . . , ηn are independent standard normal random variables. In fact, for each n > 1, he obtained an explicit intensity function gn for which Eνn(Ω) = ∫ Ω gn(x)dx. Inspired by that result, Larry Shepp and I found ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Probability Theory and Related Fields

سال: 2013

ISSN: 0178-8051,1432-2064

DOI: 10.1007/s00440-013-0480-5